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General Approach
	 The book is intended for an undergraduate engineering course in fluid mechanics. The 

principles considered in the book are fundamental and have been well established in 
the community of fluids engineering. However, in presenting this important subject, 
we have drawn on our own ideas and experience. There is plenty of material for a 
full year of instruction, and the content can also easily be divided into two semesters 
of teaching. There have been some additions and deletions in this ninth edition of 
Fluid Mechanics, but no philosophical change. There are still eleven chapters, plus 
appendices. The informal, student-oriented style is retained and, if it succeeds, has 
the flavor of an interactive lecture by the authors.
	 New co-author Dr. Henry Xue was brought on board for this edition.

Learning Tools
	 The total number of problem exercises continues to increase, from 1089 in the first 

edition, to 1681 in the ninth edition. Most of these are basic end-of-chapter problems, 
sorted according to topic. There are also Word Problems, multiple-choice Fundamen-
tals of Engineering Problems, Comprehensive Problems, and Design Projects. Answers 
to Selected Problems, at the end of the book, provides the answers to approximately 
700 end-of-chapter problems.
	 In addition, there are many example problems throughout the chapters that show-
case the recommended sequence of problem-solving steps outlined in Section 1.7.
	 Most of the problems in this text can be solved with a hand calculator. Some can 
even be simply explained in words. A few problems, especially in Chapters 6, 7, 9, 
and 10, involve solving complicated algebraic expressions, that would be laborious 
for hand calculation but can be much more easily handled using licensed equation-
solving software. The authors have provided examples of how to solve complicated 
example problems using Microsoft Excel, as illustrated in Example 6.5. Excel contains 
several hundred special mathematical functions for performing engineering and sta-
tistics calculations.

Content Changes
	 The overall content and order of presentation have not changed substantially in this 

edition except for the following:

Preface
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	 Chapter 1 renames Section 1.5 “System and Control Volume.” Definitions of system 
and control volume, which formerly were scattered over many chapters, are now con-
solidated in this section. A new subheading, “Methods of Description,” has been added. 
The Lagrangian and Eulerian methods of description have been moved here from Chap-
ter 4. Discussions of velocity and acceleration fields are retained as examples of using 
the control volume approach with the Eulerian method of description. The section
“Flow Patterns: Streamlines, Streaklines, and Pathlines,” formerly Section 1.9, has been
moved forward as Section 1.8 for better continuity in the introduction of fluid and flow
systems. A new subsection, “Integral and Differential Approaches,” has been added to 
the new Section 1.9, “Basic Flow Analysis Techniques.” 
	 Chapter 2 edits descriptions in Section 2.4, “Application to Mamometry,” using the 
methods of “pressure increasing downward” and “jump across” typically. The coordi-
nates for Figure 2.2 have been reset to be consistent with Figure 2.1. Figure 2.12 has 
been replaced with a new figure to better illustrate the pressure distribution on a 
submerged surface.
	 Chapter 3 adds three subheadings to elaborate areas where the linear momentum 
equation can be applied. Example 3.7 has been rewritten to better demonstrate how to 
solve the anchoring forces on a piping elbow. Brief discussions have been added to 
examples of the sluice gate and impinging jet with relative velocity for an inertial, mov-
ing, and nondeforming control volume.
	 Chapter 4 adds the constant heat flux boundary condition to the energy equation. 
Inlet and outlet boundary conditions are separated because the free-flow conditions are 
more common at the outlet. New Example 4.10 investigates the rotation of a Couette 
flow and a “potential vortex” flow.
	 Chapter 5 carries the topics of Section 5.2—the choice of variables and scaling 
parameters—into Section 5.3 to make it easier for students to follow the arguments. 
The topic “Some Peculiar Engineering Equations” has been removed from Section 5.2 
because most of those equations will be introduced in Chapter 10.
	 In Chapter 6, Section 6.2 has been retitled “Internal Viscous Flow.” Brief discussions 
have been added to four types of pipe flow problems to guide students in applying 
appropriate strategies for designing pipe systems.
	 In Chapter 7, the discussion in the section “Transition to Turbulence” in Section 7.4 
has been improved. The classification of external flow is elaborated. Former Section 
7.6 has been split into two sections: “Drag” and “Forces on Lifting Bodies.” The meth-
odology for solving an external flow problem is summarized.
	 An entire section of Chapter 8 on numerical methods, including problem exercises, 
has been moved to new Appendix F. The vast majority of universities do not cover 
numerical methods in a fundamental fluid mechanics course. Because the CFD methods 
are becoming a powerful tool for solving almost all problems of fluid flow, it was also 
inappropriate to place that topic at the end of this chapter. A new example of a free 
vortex has been added to Section 8.2.
	 Chapter 9 clarifies why we can simplify compressible flow as one-dimensional 
isentropic flow. Section 9.3 explains the identity of the momentum equation and the 
energy equation for isentropic flows. Discussions have been added regarding how to 
use the variables of stagnation pressure, density, and throat area after the shock wave 
in calculation.
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	 Chapter 10 improves the physical interpretation of the Froude number in Section 
10.1. There is a new subsection “Effects of Froude Number.” The need to maximize 
the hydraulic radius in order to achieve an efficient channel is elaborated in Section 
10.3.
	 Chapter 11 elaborates further on pump performance curves. New Figure 11.18a
illustrates the derivation for the system head. The data for worldwide wind power capac-
ity have been updated.
	 Appendices A to E remain unchanged. The new Appendix F, “Numerical Methods,” 
presents text that formerly was in Chapter 8. This will continue to serve instructors who 
use this material for introducing the CFD methods to their students.
	 Additionally, this title is supported by SmartBook, a feature of the LearnSmart 
adaptive learning system that assesses student understanding of course content through 
a series of adaptive questions. This platform has provided feedback from thousands 
of students, identifying those specific portions of the text that have resulted in the 
greatest conceptual difficulty and comprehension among students. For the ninth edi-
tion, the entire text was reviewed and revised based on this LearnSmart student data.

Instructor Resources
	 A number of supplements are available to instructors through Connect. New to this 

edition are Lecture PowerPoints to accompany the text.  Additionally, instructors may 
obtain the text images in PowerPoint format and the full Solutions Manual. The solu-
tions manual provides complete and detailed solutions, including problem statements 
and artwork, to the end-of-chapter problems.

Remote Proctoring and Browser-Locking Capabilities

New remote proctoring and browser-locking capabilities, hosted by Proctorio within 
Connect, provide control of the assessment environment by enabling security options 
and verifying the identity of the student.
	 Seamlessly integrated within Connect, these services allow instructors to control 
students’ assessment experience by restricting browser activity, recording students’ 
activity, and verifying students are doing their own work.
	 Instant and detailed reporting gives instructors an at-a-glance view of potential 
academic integrity concerns, thereby avoiding personal bias and supporting evidence-
based claims.

Writing Assignment
	 Available within McGraw-Hill Connect®, the Writing Assignment tool delivers a learn-

ing experience to help students improve their written communication skills and concep-
tual understanding. As an instructor you can assign, monitor, grade, and provide feedback 
on writing more efficiently and effectively.
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Falls on the Nesowadnehunk Stream in Baxter State Park, Maine, which is the northern 
terminus of the Appalachian Trail. Such flows, open to the atmosphere, are driven simply 
by gravity and do not depend much upon fluid properties such as density and viscosity. 
They are discussed later in Chap. 10. To the writer, one of the joys of fluid mechanics is 
that visualization of a fluid flow process is simple and beautiful [Robert Cable/Natural 
Selection/Design Pics].
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Chapter 1
Introduction

1.1 Preliminary Remarks
Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest 
(fluid statics). Both gases and liquids are classified as fluids, and the number of 
fluid engineering applications is enormous: breathing, blood flow, swimming, 
pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, missiles, icebergs, 
engines, filters, jets, and sprinklers, to name a few. When you think about it, 
almost everything on this planet either is a fluid or moves within or near a fluid.
	 The essence of the subject of fluid flow is a judicious compromise between 
theory and experiment. Since fluid flow is a branch of mechanics, it satisfies a 
set of well-documented basic laws, and thus a great deal of theoretical treatment 
is available. However, the theory is often frustrating because it applies mainly to 
idealized situations, which may be invalid in practical problems. The two major 
obstacles to a workable theory are geometry and viscosity. The basic equations 
of fluid motion (Chap. 4) are too difficult to enable the analyst to attack arbitrary 
geometric configurations. Thus most textbooks concentrate on flat plates, circular 
pipes, and other easy geometries. It is possible to apply numerical computer 
techniques to complex geometries, and specialized textbooks are now available 
to explain the new computational fluid dynamics (CFD) approximations and 
methods [1–4].1 This book will present many theoretical results while keeping 
their limitations in mind.
	 The second obstacle to a workable theory is the action of viscosity, which can 
be neglected only in certain idealized flows (Chap. 8). First, viscosity increases 
the difficulty of the basic equations, although the boundary-layer approximation 
found by Ludwig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow 
analyses. Second, viscosity has a destabilizing effect on all fluids, giving rise, at 
frustratingly small velocities, to a disorderly, random phenomenon called turbu-
lence. The theory of turbulent flow is crude and heavily backed up by experiment 
(Chap. 6), yet it can be quite serviceable as an engineering estimate. This textbook 
only introduces the standard experimental correlations for turbulent time-mean 
flow. Meanwhile, there are advanced texts on both time-mean turbulence and 

1Numbered references appear at the end of each chapter.
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turbulence modeling [5, 6] and on the newer, computer-intensive direct numerical 
simulation (DNS) of fluctuating turbulence [7, 8].
	 Thus there is theory available for fluid flow problems, but in all cases it should 
be backed up by experiment. Often the experimental data provide the main source 
of information about specific flows, such as the drag and lift of immersed bodies 
(Chap.  7). Fortunately, fluid mechanics is a highly visual subject, with good 
instrumentation [9–11], and the use of dimensional analysis and modeling con-
cepts (Chap. 5) is widespread. Thus experimentation provides a natural and easy 
complement to the theory. You should keep in mind that theory and experiment 
should go hand in hand in all studies of fluid mechanics.

1.2 The Concept of a Fluid
From the point of view of fluid mechanics, all matter consists of only two states, 
fluid and solid. The difference between the two is perfectly obvious to the layper-
son, and it is an interesting exercise to ask a layperson to put this difference into 
words. The technical distinction lies with the reaction of the two to an applied 
shear or tangential stress. A solid can resist a shear stress by a static deflection; 
a fluid cannot. Any shear stress applied to a fluid, no matter how small, will result 
in motion of that fluid. The fluid moves and deforms continuously as long as the 
shear stress is applied. As a corollary, we can say that a fluid at rest must be in 
a state of zero shear stress, a state often called the hydrostatic stress condition in 
structural analysis. In this condition, Mohr’s circle for stress reduces to a point, 
and there is no shear stress on any plane cut through the element under stress.
	 Given this definition of a fluid, every layperson also knows that there are two 
classes of fluids, liquids and gases. Again the distinction is a technical one con-
cerning the effect of cohesive forces. A liquid, being composed of relatively 
close-packed molecules with strong cohesive forces, tends to retain its volume 
and will form a free surface in a gravitational field if unconfined from above. 
Free-surface flows are dominated by gravitational effects and are studied in 
Chaps. 5 and 10. Since gas molecules are widely spaced with negligible cohesive 
forces, a gas is free to expand until it encounters confining walls. A gas has no 
definite volume, and when left to itself without confinement, a gas forms an 
atmosphere that is essentially hydrostatic. The hydrostatic behavior of liquids and 
gases is taken up in Chap. 2. Gases cannot form a free surface, and thus gas flows 
are rarely concerned with gravitational effects other than buoyancy.
	 Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own 
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed 
line, resisting shear without flow. A free-body diagram of element A on the side of 
the block shows that there is shear in the block along a plane cut at an angle θ 
through A. Since the block sides are unsupported, element A has zero stress on the 
left and right sides and compression stress σ = −p on the top and bottom. Mohr’s 
circle does not reduce to a point, and there is nonzero shear stress in the block.
	 By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls 
in order to eliminate shear stress. The walls exert a compression stress of −p and 
reduce Mohr’s circle to a point with zero shear everywhere—that is, the hydro-
static condition. The liquid retains its volume and forms a free surface in the 
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container. If the walls are removed, shear develops in the liquid and a big splash 
results. If the container is  tilted, shear again develops, waves form, and the free 
surface seeks a horizontal configuration, pouring out over the lip if necessary. 
Meanwhile, the gas is unrestrained and expands out of the container, filling all 
available space. Element A in the gas is also hydrostatic and exerts a compression 
stress −p on the walls.
	 In the previous discussion, clear decisions could be made about solids, liquids, 
and gases. Most engineering fluid mechanics problems deal with these clear 
cases—that is, the common liquids, such as water, oil, mercury, gasoline, and 
alcohol, and the common gases, such as air, helium, hydrogen, and steam, in their 
common temperature and pressure ranges. There are many borderline cases, how-
ever, of which you should be aware. Some apparently “solid” substances such as 
asphalt and lead resist shear stress for short periods but actually deform slowly 
and exhibit definite fluid behavior over long periods. Other substances, notably 
colloid and slurry mixtures, resist small shear stresses but “yield” at large stress 
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Free
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Hydrostatic
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Fig. 1.1 A solid at rest can resist shear. (a) Static deflection of the solid; (b) equilibrium 
and Mohr’s circle for solid element A. A fluid cannot resist shear. (c) Containing walls are 
needed; (d ) equilibrium and Mohr’s circle for fluid element A.
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and begin to flow as fluids do. Specialized textbooks are devoted to this study 
of more general deformation and flow, a field called rheology [16]. Also, liquids 
and gases can coexist in two-phase mixtures, such as steam–water mixtures or 
water with entrapped air bubbles. Specialized textbooks present the analysis of 
such multiphase flows [17]. Finally, in some situations the distinction between a 
liquid and a gas blurs. This is the case at temperatures and pressures above the 
so-called critical point of a substance, where only a single phase exists, primar-
ily resembling a gas. As pressure increases far above the critical point, the gaslike 
substance becomes so dense that there is some resemblance to a liquid, and the 
usual thermodynamic approximations like the perfect-gas law become inaccurate. 
The critical temperature and pressure of water are Tc = 647 K and pc = 219 atm 
(atmosphere)2 so that typical problems involving water and steam are below the 
critical point. Air, being a mixture of gases, has no distinct critical point, but its 
principal component, nitrogen, has Tc = 126 K and pc = 34 atm. Thus typical 
problems involving air are in the range of high temperature and low pressure 
where air is distinctly and definitely a gas. This text will be concerned solely 
with clearly identifiable liquids and gases, and the borderline cases just discussed 
will be beyond our scope.

1.3 The Fluid as a Continuum
We have already used technical terms such as fluid pressure and density without 
a rigorous discussion of their definition. As far as we know, fluids are aggrega-
tions of molecules, widely spaced for a gas, closely spaced for a liquid. The 
distance between molecules is very large compared with the molecular diameter. 
The molecules are not fixed in a lattice but move about freely relative to each 
other. Thus fluid density, or mass per unit volume, has no precise meaning 
because the number of molecules occupying a given volume continually changes. 
This effect becomes unimportant if the unit volume is large compared with, say, 
the cube of the molecular spacing, when the number of molecules within the 
volume will remain nearly constant in spite of  the enormous interchange of par-
ticles across the boundaries. If, however, the chosen unit volume is too large, 
there could be a noticeable variation in the bulk aggregation of the particles. This 
situation is illustrated in Fig. 1.2, where the “density” as calculated from molec-
ular mass δm within a given volume δ 𝒱 is plotted versus the size of the unit 
volume. There is a limiting volume δ 𝒱* below which molecular variations may 
be important and above which aggregate variations may be important. The density 
ρ of a fluid is best defined as

	 ρ = lim
δ 9→δ 9*

 
δm

δ 9
� (1.1)

The limiting volume δ 𝒱* is about 10−9 mm3 for all liquids and for gases at 
atmospheric pressure. For example, 10−9 mm3 of air at standard conditions con-
tains approximately 3 × 107 molecules, which is sufficient to define a nearly 
constant density according to Eq. (1.1). Most engineering problems are concerned 

2One atmosphere equals 2116 lbf/ft2 = 101,300 Pa.
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with physical dimensions much larger than this limiting volume, so that density 
is essentially a point function and fluid properties can be thought of as varying 
continually in space, as sketched in Fig. 1.2a. Such a fluid is called a continuum, 
which simply means that its variation in properties is so smooth that differential 
calculus can be used to analyze the substance. We shall assume that continuum 
calculus is valid for all the analyses in this book. Again there are two borderline 
cases for gases. One is at such low pressures that molecular spacing and mean 
free path3 are comparable to, or larger than, the physical size of the system. 
Applications include vacuum engineering, aero-thermal analysis and design of 
spacecrafts, satellites, missiles, etc., flying at high altitudes. The non-continuum 
effects also become significant when system length scales reduce to microscopi-
cally small. Applications with microscopic length scales are becoming increas-
ingly common since the advent of Micro-Electro-Mechanical Systems (MEMS) 
and nano devices, where the characteristic length of the system decreases to a 
magnitude of sub-micron or nanometer. Both cases require that the continuum 
approximation be dropped in favor of a molecular theory of rarefied gas flow 
[18]. In principle, all fluid mechanics problems can be attacked from the molec-
ular viewpoint, but no such attempt will be made here. Note that the use of 
continuum calculus does not preclude the possibility of discontinuous jumps in 
fluid properties across a free surface or fluid interface or across a shock wave in 
a compressible fluid (Chap. 9). Our calculus in analyzing fluid flow must be 
flexible enough to handle discontinuous boundary conditions.

1.4 Dimensions and Units
A dimension is the measure by which a physical variable is expressed quantita-
tively. A unit is a particular way of attaching a number to the quantitative dimen-
sion. Thus length is a dimension associated with such variables as distance, 
displacement, width, deflection, and height, while centimeters and inches are both 
numerical units for expressing length. Dimension is a powerful concept about 
which a splendid tool called dimensional analysis has been developed (Chap. 5), 
while units are the numerical quantity that the customer wants as the final answer.

Microscopic 
uncertainty

Macroscopic 
uncertainty

0

1200

 10–9 mm3

Elemental
volume

Region containing fluid  

    = 1000 kg/m3

    = 1100

    = 1200

    = 1300

(a) (b) 

δ�
δ�* ≈

ρ

ρ

ρ

ρ

ρ

δυ

Fig. 1.2 The limit definition of 
continuum fluid density: (a) an 
elemental volume in a fluid region 
of variable continuum density; 
(b) calculated density versus size 
of the elemental volume.

3The mean distance traveled by molecules between collisions (see Prob. P1.5).
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	 In 1872 an international meeting in France proposed a treaty called the Metric 
Convention, which was signed in 1875 by 17 countries including the United 
States. It was an improvement over British systems because its use of base 10 is 
the foundation of our number system, learned from childhood by all. Problems 
still remained because even the metric countries differed in their use of kiloponds 
instead of dynes or newtons, kilograms instead of grams, or calories instead of 
joules. To standardize the metric system, a General Conference of Weights and 
Measures, attended in 1960 by 40 countries, proposed the International System 
of Units (SI). We are now undergoing a painful period of transition to SI, an 
adjustment that may take many more years to complete. The professional societ-
ies have led the way. Since July 1, 1974, SI units have been required by all papers 
published by the American Society of Mechanical Engineers, and there is a text-
book explaining the SI [19]. The present text will use SI units together with 
British gravitational (BG) units.

Primary Dimensions
In fluid mechanics there are only four primary dimensions from which all other 
dimensions can be derived: mass, length, time, and temperature.4 These dimen-
sions and their units in both systems are given in Table 1.1. Note that the Kelvin 
unit uses no degree symbol. The braces around a symbol like {M} mean “the 
dimension” of mass. All other variables in fluid mechanics can be expressed in 
terms of {M}, {L}, {T}, and {Θ}. For example, acceleration has the dimensions 
{LT −2}. The most crucial of these secondary dimensions is force, which is directly 
related to mass, length, and time by Newton’s second law. Force equals the time 
rate of change of momentum or, for constant mass,

	 F = ma	 (1.2)

From this we see that, dimensionally, {F} = {MLT −2}.

The International System (SI)
The use of a constant of proportionality in Newton’s law, Eq.  (1.2), is avoided 
by defining the force unit exactly in terms of the basic units. In the SI system, 
the basic units are kilograms {M}, meters {L}, and seconds {T}. We define

1 newton of force = 1 N = 1 kg · 1 m/s2

4If electromagnetic effects are important, a fifth primary dimension must be included, electric 
current {I}, whose SI unit is the ampere (A).

Primary dimension	 SI unit	 BG unit	 Conversion factor

Mass {M}	 Kilogram (kg)	 Slug	 1 slug = 14.5939 kg
Length {L}	 Meter (m)	 Foot (ft)	 1 ft = 0.3048 m
Time {T}	 Second (s)	 Second (s)	 1 s = 1 s
Temperature {Θ}	 Kelvin (K)	 Rankine (°R)	 1 K = 1.8°R

Table 1.1 Primary Dimensions in SI and BG Systems
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The newton is a relatively small force, about the weight of an apple (0.225 lbf ). 
In addition, the basic unit of temperature {Θ} in the SI system is the degree 
Kelvin, K. They are referred to as the MLTΘ system of dimension. Use of these 
SI units (kg, m, s, K) will require no conversion factors in our equations.

The British Gravitational (BG) System
In the BG system also, a constant of proportionality in Eq.  (1.2) is avoided by 
defining the force unit exactly in terms of the basic units. In the BG system, the 
basic units are pound-force {F}, feet {L}, and seconds {T}. We define

1 pound of force = 1 lbf = 1 slug · 1 ft/s2

One lbf ≈ 4.4482 N and approximates the weight of four apples. We will use 
the abbreviation lbf for pound-force and lbm for pound mass. The slug is a 
rather hefty mass, equal to 32.174 lbm. The basic unit of temperature {Θ} in 
the BG system is the degree Rankine, °R. Recall that a temperature difference 
1 K = 1.8°R. They are referred to as the FLTΘ system of dimension. Use of 
these BG units (lbf, ft, s, °R) will require no conversion factors in our equations.

Other Unit Systems
There are other unit systems still in use. At least one needs no proportionality 
constant: the CGS system (dyne, gram, cm, s, K). However, CGS units are too 
small for most applications (1 dyne = 10−5 N) and will not be used here.
	 In the USA, some still use the English Engineering system (lbf, lbm, ft, s, °R), 
where the basic mass unit is the pound of mass. Newton’s law (1.2) must be rewritten:

	 F =
ma
gc

, where gc = 32.174 
ft · lbm
lbf · s2 	 (1.3)

The constant of proportionality, gc, has both dimensions and a numerical value 
not equal to 1.0. The present text uses only the SI and BG systems and will not 
solve problems or examples in the English Engineering system. Because Ameri-
cans still use them, a few problems in the text will be stated in truly awkward 
units: acres, gallons, ounces, or miles. Your assignment will be to convert these 
and solve in the SI or BG systems.

The Principle of Dimensional Homogeneity
In engineering and science, all equations must be dimensionally homogeneous, 
that is, each additive term in an equation must have the same dimensions. For 
example, take Bernoulli’s incompressible equation, to be studied and used 
throughout this text:

p +
1
2

 ρV2 + ρgZ = constant

Each and every term in this equation must have dimensions of pressure {ML−1T −2}. 
We will examine the dimensional homogeneity of this equation in detail in Exam-
ple 1.3.




